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together with perspectives on the application of real space
renormalization procedures to vortex methods based onWe consider finite difference schemes based on the impulse den-

sity variable. We show that the original velocity—impulse density the impulse density.
formulation of Oseledets is marginally ill-posed for the inviscid flow, At a first sight, the impulse density formulation also pro-
and this has the consequence that some ordinarily stable numerical videsanattractivewayof dealingwiththe issuesofboundary
methods in other formulations become unstable in the velocity—

conditions for numerical methods in the Eulerian frame,impulse density formulation. We present numerical evidence of
such as finite difference and spectral methods. Methodsthis instability. We then discuss the construction of stable finite

difference schemes by requiring that at the numerical level the based on vorticity formulations have to face the issue of en-
nonlinear terms be convertible to similar terms in the primitive forcing divergence-free conditions for velocity, vorticity, or
variable formulation. Finally we give a simplified velocity—impulse the vector potential. Although in many cases easy solutions
density formulation which is free of these complications and yet

can be found (see for example [10]), this becomes a severeretains the nice features of the original velocity—impulse density
limitation on the flexibility of the vorticity formulation. Theformulation with regard to the treatment of boundary. We present

numerical results on this simplified formulation for the driven velocity-pressure formulation, on the other hand, works
cavity flow on both the staggered and non-staggered grids. Q 1997 well on staggered grid. However, boundary condition is still
Academic Press an issue on non-staggered grids, particularly so when higher

than second order methods are sought.
The velocity—impulse density formulation seems to1. INTRODUCTION

provide a way of combining the nice features of the two
formulations discussed above, and yet is free of the prob-Recently there has been a great deal of interest in using
lems. There is no need to impose divergence-free propertythe impulse density variable as a numerical tool in the
for the impulse density. The computed velocity is naturallycomputation of incompressible flows. Most of these activi-
divergence-free since it is the projection of the impulseties are centered around the vortex method [2, 3, 5, 8, 19].
density to the space of divergence-free vector fields. TheButtke was the first to realize the potential advantage of
boundary condition for the impulse density can be treatedimplementing vortex method using the impulse density:
in the same way as the treatment of the vorticity boundarythe natural hamiltonian form, natural interpretation of the
condition. This is much easier than the pressure boundaryflow field in terms of vortex loops or dipoles, faster decay
condition. In particular the velocity—impulse density for-at infinity and the trivial incompressibility property when
mulation seems to provide an easy way of constructingthe flow field is decomposed into a collection of vortex
numerical methods on non-staggered grids.loops. This last property provided the starting point for a

However as we report in Section 2, the impulse densitynew creation method which trivially enforces the diver-
formulation does have some serious flaws. For inviscidgence-free property [19]. We refer to [7] for a summary
flows, the linearized equation is marginally ill-posed—it
contains a non-trivial Jordan block (Similar observations

1 weinan@cims.nyu.edu. Research supported by a Sloan Foundation
were made in [5]). It is well-known [16] that at a numericalfellowship and NSF grant DMS-9303779.
level this marginal ill-posedness can translate to a cata-2 jliu@math.temple.edu. Research supported by NSF grant DMS-

9505275. strophic instability of the numerical schemes. Indeed this is
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observed in our computations. In Section 2 we will present where u is the velocity field, P is the L2 projection operator
to the space of divergence-free vector fields. The connec-numerical evidence that the standard Fourier—collocation

methods and second order centered difference methods are tion between (2.1) and the standard Navier–Stokes equa-
tion is as follows. If M satisfies (2.1), and M 5 u 1 =f, letunstable for the inviscid flow. Since both methods are stable

in the primitive variable and vorticity-stream function for-
mulations, this numerical instability is purely an artifact of

p 5 ­tf 1 (u ? =)f 2
1

Re
Df 1

1
2

uuu2, (2.2)the velocity—impulse density formulation. Although the
viscous term does have a stabilizing effect, the instability for
the inviscid problem imposes a severe constraint on the size then (u, p) satisfies the Navier–Stokes equation:
of the cell Reynolds number which makes it essentially use-
less for high Reynolds number flows.

To avoid this instability we observe that the impulse den- 5­tu 1 (u ? =)u 1 =p 5
1

Re
Du,

= ? u 5 0,

(2.3)sity formulation is justanother formof theEuler(orNavier–
Stokes) equation which is well-posed. Therefore if the nu-
merical methods can be converted to a stable scheme in the
primitive variable formulation, then the instability should

Conversely if (u, p) satisfies (2.3), let f be a solution ofnot be present in the original impulse density formulation
(2.2) and M 5 u 1 =f, then (M, f) is a solution of (2.1).either. In Section 3, we will discuss examples of finite differ-
The primary motivation of Oseledets was to write the in-ence methods such that this conversion is indeed possible at
compressible Euler equation in a hamiltonian form. Theadiscrete level.Wewill alsopresentnumerical evidencethat
simplest way is to use the Lagrangian coordinates haj:these numerical schemes are indeed stable.
Let x(a, t) be the position of a particle with LagrangianAlthough the recipe described in Section 3 does provide
coordinate a at time t, and M(a, t) be the impulse densitya solution to the instability problem, the whole procedure
at that position. hx(a, t), M(a, t)j should satisfyis unnecessarily complicated. In Section 4, we give an alter-

native formulation which retains the structure of the im-
pulse density formulation except for the convective term dx

dt
5

dH
dM

,
dM
dt

5 2
dH
dx

, (2.4)
which is taken to be the same as in the original Navier–
Stokes equation. In this formulation, the potential numeri-

where H 5 As e uuu2 dx is the total kinetic energy. Onecal advantages of the impulse formulation mentioned ear-
simple consequence of (2.1) is that the generalized helicitylier are kept, although the hamiltonian structure is lost.
M ? v (v 5 = 3 u) is conserved along particle path:Since our primary purpose is the accurate approximation

of the Navier–Stokes equation at transient time scales, the
(2.5)Dt(M ? v) 5 0latter issue may mainly be cosmetic.

This new simplified formulation proves to be a very
where Dt 5 ­t 1 (u ? =) is the material derivative operator.effective numerical tool for general geometries and general
Physically M can be interpreted as a vortex dipole densitygrids. It is closely related to the projection method [6, 20,
(analog of magnetization) [4], or the impulse density [2].13, 21, 1] except that the issue of boundary condition for

pressure is replaced by that of the gauge. The latter is
2.1. Linearized Analysis for the Inviscid Casemuch simpler to deal with. This and related topics will be

discussed in a forthcoming paper. Let us linearize (2.1) around a constant state u 5 (u, v)
and M 5 (M, N). The linearized equations are2. MARGINAL ILL-POSEDNESS OF THE

VELOCITY–IMPULSE DENSITY FORMULATION
AND THE IMPLICATIONS FOR COMPUTATIONS

We will restrict ourselves to 2D. It is easy to see that 5
­tM 1 u­xM 1 v­yM 1 M­xu 1 N­xv 5 0

­tN 1 u­xN 1 v­yN 1 M­yu 1 N­yv 5 0

u 5 (u, v) 5 P M,

(2.6)
our discussions are as relevant to 3D.

Building on earlier work of Roberts [17], Oseledets ob-
served that the Navier–Stokes equations can be written in
terms of a new variable M: where M 5 (M, N). Transforming to Fourier space, we

have

5­tM 1 (u ? =)M 1 M ? (=u)> 5
1

Re
DM,

u 5 P M,

(2.1) H­tM̂ 1 i(uk1 1 vk2)M̂ 1 ik1(Mû 1 Nv̂) 5 0

­tN̂ 1 i(uk1 1 vk2)N̂ 1 ik2(Mû 1 Nv̂) 5 0
(2.7)
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and

Sû

v̂
D5 SI 2

k ^ k
uku2 D SM̂

N̂
D (2.8)

where k 5 (k1 , k2), k ^ k 5 kTk.
We now look at the special case when N 5 0, v 5 0 and

k1 5 0, so (2.7) becomes

H­tM̂ 5 0

­tN̂ 1 ik2Mû 5 0
(2.9)

From (2.8) we get û 5 M̂. Therefore (2.7) becomes

­t SM̂

N̂
D1 ik2M S0 0

1 0
D SM̂

N̂
D5 0 (2.10)

The matrix in (2.10) has a non-trivial Jordan block. This FIG. 1. Contour plot of vorticity at t 5 1/f computed by the Fourier-
collocation method. This figure shows the onset of the numerical insta-means that the Fourier modes grow linearly in t with a
bility.rate proportional to k2 :

M̂(k, t) 5 M̂(k, 0), N̂(k, t) 5 N̂(k, 0) 2 ik2tMM̂(k, 0).
u(x, y) 5 Htanh((y 2 0.25)/r) for y # 0.5

tanh((0.75 2 y)/r) for y . 0.5 (2.12)(2.11)

v(x, y) 5 d sin(2fx)Therefore the linearized equations are marginally ill-
posed.3 where r 5 1/(10f) and d 5 0.25. This test problem is often

In her thesis [5] M. Chen made the observation that upon used because it is practically periodic in both x and y
linearization the matrix has two coinciding eigenvalues but directions. We always take f(?, 0) 5 0.
only one eigenvector. This is another form of stating the We first report the result of the Fourier method. This
problem is linearly marginally ill-posed. is the standard Fourier-collocation method, coupled with

classical Runge–Kutta in time, and a smooth filter when
computing derivatives. The details of that filter is described2.2. Implications for Computations
in [11] where the same method was used in the primitive

It is well-known that lower order perturbations can turn
variable formulation to compute the same problem and

this marginal ill-posedness into catastrophic ill-posedness,
the numerical results were used as benchmarks to test the

i.e. Fourier modes grow exponentially with rates un-
ENO method. Although we carried out the numerical test

bounded in the wavenumber space [16]. Such lower order
on a variety of grid sizes, the numerical phenomena we

terms can come from the variable—coefficient (actually
observed is insensitive to the size of the grid. Hence we

nonlinear) nature of the problem. Consequently an ordi-
will only report the results on the 1282 grid.

narily stable scheme in other formulations can become
Figure 1 is the contour plot of vorticity at t 5 1/f when

unstable in the impulse density formulation. This is indeed
the numerical instability characterized by the small scale

observed in our numerical computations.
structures is becoming apparent. The development of the

Below we report the numerical results for two standard
numerical instability is most clearly seen from Figure 2

numerical methods, a Fourier-collocation method with
which shows the time evolution of the energy spectrum of

smooth filter and a second order centered difference
M. The accumulation of energy at small scales is evident.

scheme. We choose the well-known test problem of a jet
This eventually leads to an catastrophic explosion at t 5

with initial data
1.25/f. Note that a similar method (actually a small modi-
fication of the code) based on the primitive variables runs
well up to much later times until accuracy is lost.3 This is also referred to as being weakly well-posed [16].
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FIG. 2. Time evolution of the energy spectrum of M at times: t 5

0.05/f, 0.1/f, 0.15 ? f ? ? ? 1.2/f. Time increases upward. Log of the energy
spectrum is plotted.

FIG. 3. Contour plot of vorticity computed using the centered scheme
at t 5 0.17 showing the onset of numerical instability.Next we discuss the numerical results from a standard

centered difference method. At a semi-discrete level the
method can be described as:

pressible Euler’s equation is well-posed. Therefore a sim-
ple idea for constructing stable numerical methods using
impulse density is to require that the method be convertible5­tM 1 (u ? =h)M 1 M ? (=hu)> 5

1
Re

DhM,

Dhf 5 =h ? M,

u 5 M 2 =hf

(2.13) to the primitive variable form. This is the discrete analog
of the relation between (2.1) and (2.3). In this section, we

where =h is the standard centered difference operator, and
Dh is the standard 5-point formula for the Laplacian. We
use classical Runge–Kutta to discretize time.

Figure 3 is the analog of Figure 1 for this centered
scheme. It is at an earlier time since the method is less
accurate than the Fourier method, therefore errors kick
in earlier. As in the case of the Fourier method, this error
is quickly amplified, leading to a catastrophic explosion.
We do not show the energy spectrum here since it is very
similar to Figure 2.

As expected the viscous term does provide a stabilizing
factor for this numerical instability. However the limit on
the Reynolds number is rather severe. On a 1282 grid we
found that stable numerical results can be expected up to
time t 5 1.5/f for Re , 650 for the second order scheme,
and Re , 1250 for the Fourier-collocation method. An
example of such result is shown in Figure 4. It is important
to realize that this limitation comes from stability consider-
ations rather than accuracy.

3. STABLE FINITE DIFFERENCE METHODS IN THE
VELOCITY–IMPULSE DENSITY FORMULATION

The numerical instability discussed in the last section is FIG. 4. Contour plot of vorticity at Reynolds number 1250 computed
using the Fourier-collocation method. t 5 1.5/f.purely an artifact of the formulation—the original incom-
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show that in this way it is indeed possible to construct
stable schemes based on the impulse density variable.

Let us concentrate on the first component of the dynamic
equation and use the notation M 5 (M, N), u 5 (u, v).
Consider the scheme:

(3.1)­tM 1 uDxM 1 vDyM 1 MDxu 1 NDxv 5 0

We will specify the overbar, Dx , Dy , Gx , Gy operators
later. Substituting in

(3.2)M 5 u 1 Gxf, N 5 v 1 Gyf

and rearranging terms, we get

(3.3)­tu 1 uDxu 1 vDyu 1 Gx(­tf) 1 I2 1 I3 5 0

where

FIG. 5. Contour plot of vorticity computed using the stable second
order centered difference method discussed in Section 3. Other numericalI2 5 uDxGxf 1 vDyGxf 1 GxfDxu 1 GyfDxv (3.4)
parameters are the same as the ones in Figure 4 except t 5 2/f.

I3 5 uDxu 1 vDxv (3.5)

We require that I2 1 I3 be the first component of a discrete we get
gradient term: (2.2) suggests that we should expect

I2 5 Dx(uGxf 1 vGyf) 5 Gx(uDxf 1 vDyf) (3.11)
I2 5 Gx(uDxf 1 vDyf), I3 5 AsGx(u2 1 v2) (3.6)

Finally we can rewrite (3.1) asEXAMPLE 1. Let Dx , Dy , Gx , Gy be the standard cen-
tered difference operators. Define fi,j 5 As( fi11,j 1 fi21,j).

­tu 1 uDxu 1 vDyu

(3.12)
For the second component of the dynamic equation, the
overbar operator has to be defined as fi,j 5 As( fi,j11 1 fi,j21).

1 Gx S­tf 1 uDxf 1 vDyf 1
1
2

(u2 1 v2)D5 0Then we have

Similarly the second component of the dynamic equationI3 5
1
2

(ui11,j 1 ui21,j)
ui11,j 2 ui21,j

2 Dx can be rewritten as

­tv 1 uDxv 1 vDyv
(3.13)

1
1
2

(vi11,j 1 vi21,j)
vi11,j 2 vi21,j

2 Dx
(3.7)

1 Gy S­tf 1 uDxf 1 vDyf 1
1
2

(u2 1 v2)D5 05
1

4 Dx
(u2

i11,j 2 u2
i21,j 1 v2

i11,j 2 v2
i21,j)

5 As(Gx(u2 1 v2))i,j

(3.8)

Notice that the overbar operator in (3.12) and (3.13) are
defined differently.I2 5 uDxGxf 1 GxfDxu 1 vDxGyf 1 GyfDxv

The only difference between this scheme and the one
discussed in Section 2.2 is the treatment of the nonlinearUsing the discrete product rule:
terms. We have checked numerically that the directional
averaging operation does make the scheme stable. In Fig-

fDxg 1 gDx f 5 Dx( fg) (3.9) ure 5 we show the numerical result computed using this
new scheme. Other numerical parameters are the same as

and the commutation relation the ones in Figure 3 except that Figure 5 is at a later
time. In contrast to Figure 3, we see no signs of numerical
instability. The computation was carried out to longer timeDyGx 5 DxGy (3.10)
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FIG. 6. Staggered grid, dark circles denote the grid points of the background grid at the boundary.

until accuracy was eventually lost due to thinning of the terms can also be converted to the corresponding terms
in the primitive variable formulation.shear layers.

All these complications become unnecessary if we just
EXAMPLE 3. Let Dx , Dy , Gx , Gy be the standard for- modify the velocity—impulse density formulation such

ward difference operators. Define fi,j 5 As( fi11,j 1 fi,j). For that the nonlinear terms retain their original form in the
the second component of the dynamic equation, the over- primitive variable form. The modified velocity—impulse
bar operator has to be defined as fi,j 5 As( fi,j11 1 fi,j). Then density formulation takes the form:
(3.1) can be rewritten as

­tu 1 uDxu 1 vDyu 1 Gx(­tf 1 uDxf
(3.14) 5­tM 1 (u ? =)u 5

1
Re

DM

u 5 P M

(4.1)1 vDyf 1 As(u2 1 v2)) 5 0

Similarly for the second component of the dynamic equa-
tion. We will not report any numerical results on this If we write M 5 u 1 =f, then pressure is given by
scheme since it is only first order accurate.

4. A SIMPLIFIED VELOCITY–IMPULSE p 5 ­tf 2
1

Re
Df (4.2)

DENSITY FORMATION

The complications discussed in Sections 2 and 3 come This formation is actually simpler than (2.1) in many ways.
Certainly the construction of stable numerical methods isfrom the nonlinear terms. We saw in Section 2 that the

nonlinear terms, as was written in the original velocity— much simpler. This will be discussed below. One important
fact is that the potential advantage of the original veloc-impulse density formulation (2.1), easily trigger numerical

instabilities. The cure to this instability discussed in Section ity—impulse density formulation (2.1) with regard to the
treatment of boundary condition is still retained. This can3 was to make sure that at a numerical level, the nonlinear
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FIG. 7. Non-staggered grid.

be seen from 4.2 when we discuss finite difference schemes
on non-staggered grids. Hu 5 M 2 Dxf, at ‘‘n’’ points,

v 5 N 2 Dyf, at ‘‘s’’ points,
(4.5)

4.1. Finite Difference Methods Based on the Simplified
where we used the notationsVelocity–Impulse Density Formulation on

Staggered Grid
Dhu 5 (D2

x 1 D2
y)u,We first demonstrate the application of the simplified

velocity—impulse density formulation on the staggered
D̃xu(x, y) 5

u(x 1 Dx, y) 2 u(x 2 Dx, y)
2 Dx

,grid—also referred to as the MAC grid. One such grid is
displayed in Figure 6 where the gauge variable f is defined
at ‘‘h’’ points, the first and second component of the veloc- Dxu(x, y) 5

u(x 1 Dx/2, y) 2 u(x 2 Dx/2, y)
Dx

,
ity u and v are defined at ‘‘n’’ and ‘‘s’’ points respectively;
similarly for the impulse density. We can write the differ-

Exu(x, y) 5
u(x 1 Dx/2, y) 1 u(x 2 Dx/2, y)

2
,ence scheme as

and similarly for D̃yu, Dyu, Eyu.
Now we come to the boundary conditions. The ideaH­tM 1 uD̃xu 1 ExEyvD̃yu 5 n DhM, at ‘‘n’’ points,

­tN 1 ExEyuD̃xu 1 vD̃yv 5 n DhN, at ‘‘s’’ points,
is to realize the boundary conditions for (u, v) through
boundary conditions for (M, N) and w. The simplest way
of implementing the velocity boundary conditions in the(4.3)
MAC scheme is to use the reflection technique. On the
segment Gx (see Figure 6), the boundary condition v 5 0Dhf 5 DxM 1 DyN, at ‘‘h’’ points. (4.4)
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4.2. Non-Staggered Grids

Now we discuss a method on non-staggered grid (see
Figure 7). We define all the variables at the center of each
computational cell, i.e. the ‘‘h’’ points. The momentum
equations are discretized at these points using:

H­tM 1 uD̃xu 1 vD̃yu 5 n DhM,

­tN 1 uD̃xv 1 vD̃yv 5 n DhN.
(4.11)

The difference operators were defined earlier.
Next we discuss the implementation of the projection

step. Following an idea of Rhie and Chow [15], we will
compute discrete divergences by defining volume fluxes at
the edges of the cells, e.g.

HMi11/2,j 5 (ExM)i11/2,j , at ‘‘n’’ points,

Ni,j11/2 5 (EyN)i,j11/2 , at ‘‘s’’ points,
(4.12)FIG. 8. Driven cavity flow at Reynolds number 104, t 5 1000. Shown

here is the contour plot of vorticity at t 5 1000 computed using the
method described in Section 4.1 on the staggered grid.

To define this at the boundary we need the values hM0,jj
near Gx and hNi,0j near Gy which we define using the reflec-
tion technique:is imposed exactly at the ‘‘s’’ points: vi21/2,0 5 0, the bound-

ary condition u 5 0 is imposed approximately at the ‘‘d’’
points by letting

(4.13)M0,j 5 2M1,j on Gy Ni,0 5 2Ni,1 on Gx

(4.6)ui,21/2 5 2ui,1/2 .

Similarly on Gy , we have

(4.7)v21/2,j 5 2v1/2,j , u0,j21/2 5 0.

An easy way of realizing these boundary conditions is to
impose Neumann boundary condition for w,

(4.8)fi,21/2 5 fi,1/2 on Gx , f21/2,j 5 f1/2,j on Gy ;

Once f is known, the boundary condition for (M, N) can
be obtained using (4.5). This means that on Gx we impose
Ni21/2,0 5 0 at the ‘‘s’’ points, and

(4.9)Mi,21/2 5 2ui,1/2 1 Dxfi,1/2 .

at the ‘‘d’’ points. Similarly on Gy , we have

(4.10)N21/2,j 5 2v1/2,j 1 Dyf1/2,j , M0,j21/2 5 0.

Finally we mention that in the calculations presented
below, time-stepping is done using the explicit 3rd or 4th FIG. 9. Driven cavity flow at Reynolds number 104, t 5 1000. Shown
order Runge–Kutta method. The details and advantages here is the contour plot of stream function at t 5 1000 computed using

the method described in Section 4.1 on the staggered grid.of this is discussed in [9].
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ui,j 5 As(ui11/2,j 1 ui21/2,j), vi,j 5 As(vi,j11/2 1 vi,j21/2). (4.19)

This completes the projection step.
Finally the tangential component of the impulse density

at the boundary is obtained by:

Mi,0 5 2Mi,1 1 2Dxfi,1 , (4.20)

on Gx , and

N0,j 5 2N1,j 1 2Dyf1,j , (4.21)

on Gy . In the end we have, for velocity at the boundary:

ui,0 5 2ui,1 , vi,0 5 2vi,1 , (4.22)
FIG. 10. Time history of total kinetic energy for the computations

shown in Figures 8–9. on Gx , and

u0,j 5 2u1,j , v0,j 5 2v1,j , (4.23)

Divergence at the center of a cell (the ‘‘h’’ points) can on Gy . Again for time-stepping, we used explicit 3rd or 4th
now be defined as order Runge–Kutta methods.

We implemented these methods on a canonical test
problem—the driven cavity flow. Again all computations

(div M)i,j 5
Mi11/2,j 2 Mi21/2,j

Dx
1

Ni,j11/2 2 Ni,j21/2

Dy
(4.14) were done on a 1282 grid. The computational domain is

[0, 1] 3 [0, 1]. The boundary condition u 5 0, v 5 0 is
imposed everywhere at the boundary except at hy 5 1j5 Dx(ExM) 1 Dy(EyN) 5 D̃xM 1 D̃yN.
where we impose u 5 1, v 5 0. We will present the results
at Reynolds number Re 5 104 which is the most extensively

f can be solved using studied case [12, 18, 9]. With the exception of [9], other
existing results were computed using the steady state equa-

Dhf 5 Dx(ExM) 1 Dy(EyN) 5 D̃xM 1 D̃yN, (4.15)

and the Neumann condition:

fi,0 5 fi,1 on Gx, f0,j 5 f1,j on Gy . (4.16)

This gives us naturally the mass fluxes at the edges of
the cell:

ui11/2,j 5 Mi11/2,j 2 (Dxf)i11/2,j , at ‘‘n’’ points,
(4.17)

vi,j11/2 5 Ni,j11/2 2 (Dyf)i,j11/2 , at ‘‘s’’ points,

which obey volume conservation on each cell:

(ui11/2,j 2 ui21/2,j)/Dx 1 (vi,j11/2 2 vi,j21/2)/Dy 5 0. (4.18)

We can now define the velocity at the center of the cell
FIG. 11. Same as in Figure 8, but computed on the non-staggered grid.by take averages:
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tions directly. In particular, [12] contains accurate solutions REFERENCES
of the steady Navier–Stokes equation using the multi-grid

1. J. B. Bell, P. Collela, and H. G. Glaz, J. Comput. Phys. 85(1989),method. Here we will compute faithfully the unsteady dy-
pp. 257–283.

namics in order to address the issue of whether the solu-
2. T. Buttke, Velocity methods: Lagrangian numerical methods which

tions of the unsteady Navier–Stokes equations converge preserve the Hamiltonian structure of incompressible fluid flow, in
to the steady state. At the present time, this is still an open Vortex Flows and Related Numerical Methods, edited by J. T. Beale,

G. H. Cottet and S. Huberson (Kluwer, Dordrecht) 1993.question. For initial data we choose the impulsive start:
3. T. Buttke and A. Chorin, Turbulence calculation using magnetizationu 5 0, v5 0.

variables, Appl. Numer. Math. 12, 47–54 (1993).Figure 8 is the contour plot of vorticity computed using
4. S. G. Chefranov, The dynamics of point vortex dipoles and spontane-the method described in Section 4.1 at t 5 1000. Aside

ous singularities in three-dimensional turbulent flows, Sov. Phys.from the small oscillations at the upper right corner, the
JETP 66, 85 (1987).

numerical solution is almost indistinguishable from the
5. M. Chen, thesis, NYU.

steady state solutions in [12, 18]. Figure 9 shows that con-
6. A. Chorin, Bull. Amer. Math. Soc. 73, 928 (1967).

tour plot of stream function. Compared with the very accu-
7. A. Chorin, Microstructure, renormalization, and more efficient vortex

rate results of [12] computed on a 2562 grid, we see that method, preprint, 1995.
all the small scale features are reproduced. Another strong 8. R. Cortez, in Proceedings of the Second International Workshop on
indication that the numerical solution is reaching steady Vortex Flows and Related Numerical Methods, Montreal, August 1995,

to appear.state is given in Figure 10 where we plot the time history
9. W. E and J.-G. Liu, Vorticity boundary condition and related issuesof energy. At the time when we stopped our computation,

for finite difference schemes, J. Comput. Phys. 124, 368 (1996).the total energy is only changing in its fifth digit. Similarly
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